【LeetCode】1095. 山脉数组中查找目标值 Find in Mountain Array


题目地址:https://leetcode-cn.com/problems/find-in-mountain-array/

题目描述

给你一个 山脉数组 mountainArr,请你返回能够使得 mountainArr.get(index) 等于 target 最小 的下标 index 值。

如果不存在这样的下标 index,就请返回 -1

何为山脉数组?如果数组 A 是一个山脉数组的话,那它满足如下条件:

  1. 首先,A.length >= 3
  2. 其次,在 0 < i < A.length - 1 条件下,存在 i 使得:
  • A[0] < A[1] < ... A[i-1] < A[i]
  • A[i] > A[i+1] > ... > A[A.length - 1]

你将 不能直接访问该山脉数组,必须通过 MountainArray 接口来获取数据:

  • MountainArray.get(k) - 会返回数组中索引为k 的元素(下标从 0 开始)
  • MountainArray.length() - 会返回该数组的长度

注意:

对 MountainArray.get 发起超过 100 次调用的提交将被视为错误答案。此外,任何试图规避判题系统的解决方案都将会导致比赛资格被取消。

为了帮助大家更好地理解交互式问题,我们准备了一个样例 “答案”:https://leetcode-cn.com/playground/RKhe3ave,请注意这 不是一个正确答案。

示例 1:

输入:array = [1,2,3,4,5,3,1], target = 3
输出:2
解释:3 在数组中出现了两次,下标分别为 2 和 5,我们返回最小的下标 2。

示例 2:

输入:array = [0,1,2,4,2,1], target = 3
输出:-1
解释:3 在数组中没有出现,返回 -1。

提示:

  1. 3 <= mountain_arr.length() <= 10000
  2. 0 <= target <= 10^9
  3. 0 <= mountain_arr.get(index) <= 10^9

题目大意

在一个山形的数组上,找出 target 元素第一次出现的位置。

解题方法

二分查找

这个题疯狂提示用二分查找。
提示1. 山脉数组的左右两部分分别有序
提示2. array数组总长度是 10000,总的读取元素的次数不超过 100 次。
根据这两点,我们可以 100% 地确定用二分查找方法。

题目的难点在于找到 target 出现的第一个位置,如果我们想着只在山峰的左边或者右边使用一次二分查找的话,没法确定一次就就查找到。因此必须在山峰的左右两边都进行二分查找。

那么思路就是:

  1. 找到山峰的位置
  2. 在山峰的左边查找 target
  3. 如果查找不到,则在山峰的右边查找 target

二分法是个经典的模板问题。推荐使用 二分查找模板2

找到山峰的位置可以根据 mid 元素处于上坡还是下坡来识别出来。在左右两部分进行查找 target 就是普通的二分,唯一需要注意的是 左边是递增的,右边是递减的,二分查找的判断不要出错。

Python 代码如下:

# """
# This is MountainArray's API interface.
# You should not implement it, or speculate about its implementation
# """
#class MountainArray:
#    def get(self, index: int) -> int:
#    def length(self) -> int:

class Solution:
    def findInMountainArray(self, target: int, nums: 'nums') -> int:
        N = nums.length()
        peek = self.findPeek(target, nums)
        left_index = self.findInAscOrder(target, nums, 0, peek)
        right_index = self.findInDecOrder(target, nums, peek, N - 1)
        if left_index != -1:
            return left_index
        else:
            return right_index

    def findPeek(self, target, nums):
        N = nums.length()
        left, right = 1, N - 2
        while left <= right:
            mid = left + (right - left) // 2
            if nums.get(mid - 1) < nums.get(mid) > nums.get(mid + 1):
                return mid
            elif nums.get(mid - 1) < nums.get(mid) < nums.get(mid + 1):
                left = mid + 1
            else:
                right = mid - 1
        return left
    
    def findInAscOrder(self, target, nums, begin, end):
        left, right = begin, end
        while left <= right:
            mid = left + (right - left) // 2
            print(left, right, mid)
            cur = nums.get(mid)
            if cur == target:
                return mid
            elif cur < target:
                left = mid + 1
            else:
                right = mid - 1
        return -1
    
    def findInDecOrder(self, target, nums, begin, end):
        left, right = begin, end
        while left <= right:
            mid = left + (right - left) // 2
            cur = nums.get(mid)
            if cur == target:
                return mid
            elif cur < target:
                right = mid - 1
            else:
                left = mid + 1
        return -1

欢迎关注负雪明烛的刷题博客,leetcode刷题800多,每道都讲解了详细写法!

日期

2020 年 4 月 29 日 —— 连续刷二分

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页