【LeetCode】1437. 是否所有 1 都至少相隔 k 个元素 Check If All 1s Are at Least Length K Places Away


题目地址:https://leetcode-cn.com/problems/check-if-all-1s-are-at-least-length-k-places-away/

题目描述

给你一个由若干 01 组成的数组 nums 以及整数 k。如果所有 1 都至少相隔 k 个元素,则返回 True ;否则,返回 False

示例 1:

此处输入图片的描述

输入:nums = [1,0,0,0,1,0,0,1], k = 2
输出:true
解释:每个 1 都至少相隔 2 个元素。

示例 2:

此处输入图片的描述

输入:nums = [1,0,0,1,0,1], k = 2
输出:false
解释:第二个 1 和第三个 1 之间只隔了 1 个元素。

示例 3:

输入:nums = [1,1,1,1,1], k = 0
输出:true

示例 4:

输入:nums = [0,1,0,1], k = 1
输出:true

提示:

  1. 1 <= nums.length <= 10^5
  2. 0 <= k <= nums.length
  3. nums[i] 的值为 01

题目大意

判断给出的数组中,是否所有的 1 的间隔都至少为 k.

解题方法

指针

看一眼题目给出的 nums 的长度,我们知道必须用 O(1) 的时间复杂度解决。

使用一次遍历,在遍历的过程中,使用 left_1 指针保存当前遍历位置左边的最后一个 1。如果当前遍历的数字也是 1,则判断一下和左边最后一个 1 的距离是否 >= k + 1。

Python 代码如下:

class Solution(object):
    def kLengthApart(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: bool
        """
        left_1 = float("-inf")
        for i, num in enumerate(nums):
            if num == 1:
                if i - left_1 < k + 1:
                    return False
                left_1 = i
        return True

欢迎关注负雪明烛的刷题博客,leetcode刷题800多,每道都讲解了详细写法!

日期

2020 年 5 月 3 日 —— 天气好热,瞬间入夏

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页