【LeetCode】1461. 检查一个字符串是否包含所有长度为 K 的二进制子串 Check If a String Contains All Binary Codes of Size K


题目地址:https://leetcode-cn.com/problems/check-if-a-string-contains-all-binary-codes-of-size-k/

题目描述

给你一个二进制字符串 s 和一个整数 k 。

如果所有长度为 k 的二进制字符串都是 s 的子串,请返回 True ,否则请返回 False 。

示例 1:

输入:s = "00110110", k = 2
输出:true
解释:长度为 2 的二进制串包括 "00","01","10" 和 "11"。它们分别是 s 中下标为 0,1,3,2 开始的长度为 2 的子串。

示例 2:

输入:s = "00110", k = 2
输出:true

示例 3:

输入:s = "0110", k = 1
输出:true
解释:长度为 1 的二进制串包括 "0" 和 "1",显然它们都是 s 的子串。

示例 4:

输入:s = "0110", k = 2
输出:false
解释:长度为 2 的二进制串 "00" 没有出现在 s 中。

示例 5:

输入:s = "0000000001011100", k = 4
输出:false

提示:

  1. 1 <= s.length <= 5 * 10^5
  2. s 中只含 0 和 1 。
  3. 1 <= k <= 20

题目大意

检查一个字符串是否包含所有长度为 K 的二进制子串。

解题方法

统计长度为 K 的子串个数

第一想法:把长度为 K 的所有二进制全部找出来,然后判断是否都在 s 中出现了。该方法的复杂度是 O(2^K * len(s)),大概是 10 ^ 11的级别,一定会超时。

所以反过来想, s 中长度为 K 的所有不同的子串数目是否有 2 ^ K 个呢。如果是的话,说明 s 中包含所有长度为 K 的二进制子串。

代码是 set + 子字符串 实现的。

时间复杂度是 O(N*k),N 是 s 的长度,乘以 k 是截取获得子字符串的操作时间复杂度。
空间复杂度是 O(2 ^ k)

Python 代码如下:

class Solution(object):
    def hasAllCodes(self, s, k):
        """
        :type s: str
        :type k: int
        :rtype: bool
        """
        contains = set()
        N = len(s)
        for i in range(N - k + 1):
            contains.add(s[i:i + k])
        return len(contains) == (2 ** k)

欢迎关注负雪明烛的刷题博客,leetcode刷题800多,每道都讲解了详细写法!

日期

2020 年 5 月 31 日 —— 转眼 5 月过去了

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页