【LeetCode】1462. 课程安排 IV Course Schedule IV (Python)


题目地址:https://leetcode-cn.com/problems/course-schedule-iv/

题目描述

你总共需要上 n 门课,课程编号依次为 0n-1

有的课会有直接的先修课程,比如如果想上课程 0 ,你必须先上课程 1 ,那么会以 [1,0] 数对的形式给出先修课程数对。

给你课程总数 n 和一个直接先修课程数对列表 prerequisite 和一个查询对列表 queries

对于每个查询对 queries[i] ,请判断 queries[i][0] 是否是 queries[i][1] 的先修课程。

请返回一个布尔值列表,列表中每个元素依次分别对应 queries 每个查询对的判断结果。

注意:如果课程 a 是课程 b 的先修课程且课程 b 是课程 c 的先修课程,那么课程 a 也是课程 c 的先修课程。

示例 1:

在这里插入图片描述

输入:n = 2, prerequisites = [[1,0]], queries = [[0,1],[1,0]]
输出:[false,true]
解释:课程 0 不是课程 1 的先修课程,但课程 1 是课程 0 的先修课程。

示例 2:

输入:n = 2, prerequisites = [], queries = [[1,0],[0,1]]
输出:[false,false]
解释:没有先修课程对,所以每门课程之间是独立的。

示例 3:

在这里插入图片描述

输入:n = 3, prerequisites = [[1,2],[1,0],[2,0]], queries = [[1,0],[1,2]]
输出:[true,true]

示例 4:

输入:n = 3, prerequisites = [[1,0],[2,0]], queries = [[0,1],[2,0]]
输出:[false,true]

示例 5:

输入:n = 5, prerequisites = [[0,1],[1,2],[2,3],[3,4]], queries = [[0,4],[4,0],[1,3],[3,0]]
输出:[true,false,true,false]

提示:

  1. 2 <= n <= 100
  2. 0 <= prerequisite.length <= (n * (n - 1) / 2)
  3. 0 <= prerequisite[i][0], prerequisite[i][3] < n
  4. prerequisite[i][0] != prerequisite[i][4]
  5. 先修课程图中没有环。
  6. 先修课程图中没有重复的边。
  7. 1 <= queries.length <= 10^4
  8. queries[i][0] != queries[i][5]

题目大意

题目给出了一个图。判断是否可以从queries[i][0]走向queries[i][1]

解题方法

DFS

检查有向图中从queries[i][0]出发是否可以到达queries[i][1],最简单的思路就是 DFS 看到能否搜索到。但是看了题目给出的数量级,估算如果每次query都在全图 DFS 搜索,时间复杂度为 O(queries.length * prerequisite.length) 约为 10^8 量级,则会超时。

那么 DFS 就不行了吗?并不见得。我们可以看出 DFS 会存在同一路径重复查找的现象,可以进行优化。

举例说明,假如题目给出的先修课程的图是这样的:

1 -> 2 -> 3 -> 4

假如第一个 query 判断了 1 -> 4 是可以的;
假如第二个 query 要判断 2 -> 4,是否需要重新搜索一遍呢?我们在第一个query中已经走过了这条路了呀,就没有必要重新搜索了。

即,我们的思路就是记录已经判断过的所有的路径,防止重复计算。比如在上面的例子中,我们在搜索 1 -> 4 的过程中,保存记录 1,2,3 都可以走到 4;如果下次再判断 2 是否能到 4 的时候,就可以在O(1)的时间内直接出结果了。

代码的实现时,先写出普通的 DFS 搜索是否可从 start 到达 end 的代码,然后可以用 Python3 提供的@functools.lru_cache,该函数能自动保存函数的参数和返回,相当于函数调用的记忆化。如果不用该函数,也可以自己定义memo数组来记录参数和返回。

  • 时间复杂度:最好情况下只需要第一次搜索的时候把路径保存下来,之后查表就行,因此时间复杂度是 O(n);最坏情况下,查询的时候从来没有走过重复的路径(比如星型的图),时间复杂度是O(N * queries.length)。
  • 空间复杂度:最省空间的时候是没有保存过重复的路径,空间复杂度是O(1);最费空间是把所有的节点两两路径保存,空间复杂度是O(N^2)。

Python 代码如下:

class Solution(object):
    def checkIfPrerequisite(self, n, prerequisites, queries):
        """
        :type n: int
        :type prerequisites: List[List[int]]
        :type queries: List[List[int]]
        :rtype: List[bool]
        """
        self.graph = collections.defaultdict(list)
        for pre in prerequisites:
            self.graph[pre[0]].append(pre[1])
        return [self.dfs(query[0], query[1]) for query in queries]
    
    # start -> end ?
    @functools.lru_cache
    def dfs(self, start, end):
        if start == end:
            return True
        return any(self.dfs(nxt, end) for nxt in self.graph[start])

欢迎关注负雪明烛的刷题博客,leetcode刷题800多,每道都讲解了详细写法!

日期

2020 年 6 月 1 日 —— 6月的开始,儿童节快乐!

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页