【LeetCode】1465. 切割后面积最大的蛋糕 Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts


题目地址:https://leetcode-cn.com/problems/maximum-area-of-a-piece-of-cake-after-horizontal-and-vertical-cuts/

题目描述

矩形蛋糕的高度为 h 且宽度为 w,给你两个整数数组 horizontalCutsverticalCuts,其中 horizontalCuts[i] 是从矩形蛋糕顶部到第 i 个水平切口的距离,类似地, verticalCuts[j] 是从矩形蛋糕的左侧到第 j 个竖直切口的距离。

请你按数组 horizontalCutsverticalCuts 中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果对 10^9 + 7 取余后返回。

示例 1:

输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
输出:4 
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。

示例 2:

在这里插入图片描述

输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
输出:6
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。

示例 3:

输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
输出:9

提示:

  1. 2 <= h, w <= 10^9
  2. 1 <= horizontalCuts.length < min(h, 10^5)
  3. 1 <= verticalCuts.length < min(w, 10^5)
  4. 1 <= horizontalCuts[i] < h
  5. 1 <= verticalCuts[i] < w
  6. 题目数据保证 horizontalCuts 中的所有元素各不相同
  7. 题目数据保证 verticalCuts 中的所有元素各不相同

题目大意

本题给出了一个矩形,并给出了横竖很多切割线,求切割得到最大矩形面积。

解题方法

找最大间隔之积

第一想法是暴力:对每个横竖切割线两两组合,求出组合出的所有矩形的最大的面积。该方法的时间复杂度是 O(M * N),M 和 N 分别为横竖切割线的个数,看了题目给出的 M 和 N 都是 10^5 量级,想乘就是 10^10 量级,会超时。

既然不能暴力求解,就必须优化。稍加思索,不难想到:找出切割线中 最大行间隔最大列间隔,两者相乘就是最大矩形面积。

原因是:每一个 行间隔 都跟所有的 列间隔 相交,每一个 列间隔 也都跟所有的 行间隔 相交,而且他们都是正数。

用数学表述就是在

  1. 1 <= horizontalCuts[i] <= max(horizontalCuts)
  2. 1 <= verticalCuts[j] <= max(verticalCuts)

两个条件的约数下,求 horizontalCuts[i] * verticalCuts[j] 最大值。

显然答案是 max(horizontalCuts) * max(verticalCuts)

在实现的时候添加了矩形的边界[0, h], [0, w],对 行列的切割线 进行了排序,然后遍历求 行列的切割间隔 最大值,最后求行列最大值的乘积。

最后,注意题目要求对 10^9 + 7 取余。

Python 代码如下:

class Solution:
    def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int:
        horizontalCuts.append(0); horizontalCuts.append(h)
        verticalCuts.append(0); verticalCuts.append(w)
        horizontalCuts.sort()
        verticalCuts.sort()
        M, N = len(horizontalCuts), len(verticalCuts)
        max_hc = 0
        max_vc = 0
        for i in range(M - 1):
            max_hc = max(max_hc, horizontalCuts[i + 1] - horizontalCuts[i])
        for j in range(N - 1):
            max_vc = max(max_vc, verticalCuts[j + 1] - verticalCuts[j]) 
        return (max_hc * max_vc) % (10 ** 9 + 7)

欢迎关注负雪明烛的刷题博客,leetcode刷题800多,每道都讲解了详细写法!

日期

2020 年 6 月 1 日 —— 6月的开始,儿童节快乐!

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页