【LeetCode】839. 相似字符串组 Similar String Groups (Python)

  • 作者: 负雪明烛
  • id: fuxuemingzhu
  • 公众号:每日算法题
  • 本文关键词:LeetCode,力扣,算法,算法题,字符串,并查集,刷题群

题目地址:https://leetcode-cn.com/problems/similar-string-groups/

题目描述

如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等,那么称 XY 两个字符串相似。如果这两个字符串本身是相等的,那它们也是相似的。

例如,对于 [“tars”, “rats”, “arts”, “star”] 这四个字符串而言:

  • tars” 和 “rats” 是相似的 (交换 0 与 2 的位置); “rats” 和 “arts” 也是相似的。
  • 但是 “star” 不与 [“tars”,“rats”,“arts”] 中的任意一个相似,因为无法通过交换 star 中的两个不同位置字母得到三者的任意一个。

总之,它们通过相似性形成了两个关联组:{“tars”, “rats”, “arts”} {“star”}。注意,“tars”“arts” 是在同一组中,即使它们并不相似。形式上,对每个组而言,要确定一个单词在组中,只需要这个词和该组中至少一个单词相似。

在这里插入图片描述

给你一个字符串列表 strs 。列表中的每个字符串都是 strs 中其它所有字符串的一个字母异位词。请问 strs 中有多少个 相似字符串组

示例:

输入:strs = [“tars”,“rats”,“arts”,“star”]
输出:2
解释:如题目上文所解释,可以分为 {“tars”, “rats”, “arts”} 和 {“star”} 两个相似字符串组。

解题思路

并查集

今天的题目的中文题意比较模糊,我看了很久才明白相似字符串组的含义。即相似字符串组中的每个字符串都有另外至少一个字符串和它相似。比如对于 {“tars”, “rats”, “arts”} 这个相似字符串组而言,相似关系是 “tars” <=> “rats” <=> “arts”

两个字符串相似的含义是能够通过交换两个字符的位置,得到另外一个字符串。判断两个字符串相似的时间的复杂度是 O(N),因为把所有位置遍历一次,统计两个字符串的对应位置有多少不等即可。

明白了题意之后,做法也就呼之欲出了:把每个字符串当做图中的一个节点,如果两个字符串相似,那么它们之间就有一条边。图中的每个连通区域是一个相似字符串组。问:图中有多少个不连通的区域?

很显然,图的连通性问题可以用「并查集」去做。然后套「并查集」的模板就可以了。

这也是我之前说的:“在明白题目考察什么之后,剩下的就是套模板”。

和今天题目非常类似的题目是「1579. 保证图可完全遍历」,我前几天的文章已经详细分析过了,两者都是考察图中有多少个连通区域,都是直接使用并查集模板。

代码

每个字符串都是一个节点,我们需要分析每两个节点之间是否相似,如果相似就添加一条边,使用并查集,看最终有多少个连通区域。

代码思路:

  1. 两重 for 循环,实现对节点之间两两组合,判断两个节点是否相似;
  2. 判断相似的方法是:两个字符串的对应位置中只有 0 个或者 2 个不同;
  3. 如果两个字符串相似则使用并查集,将此两个节点之间连通上一条边;
  4. 统计最终并查集中有多少个不同的连通区域,即为所求。

使用 Python2 写的代码如下。

class Solution(object):
    def numSimilarGroups(self, strs):
        """
        :type strs: List[str]
        :rtype: int
        """
        N = len(strs)
        dsu = DSU(N)
        for i in range(N):
            for j in range(i + 1, N):
                if self.isSimilar(strs[i], strs[j]):
                    dsu.union(i, j)
        return dsu.regions()
            
    def isSimilar(self, str1, str2):
        count = 0
        for i in range(len(str1)):
            if str1[i] != str2[i]:
                count += 1
        return count == 2 or count == 0

class DSU:
    def __init__(self, N):
        self.par_ = range(N + 1)
        self.regions_ = N

    def find(self, x):
        if x != self.par_[x]:
            self.par_[x] = self.find(self.par_[x])
        return self.par_[x]
    
    def union(self, x, y):
        px = self.find(x)
        py = self.find(y)
        if px == py:
            return
        self.par_[px] = py
        self.regions_ -= 1
    
    def regions(self):
        return self.regions_

刷题心得

今天的题目考察并查集,仍然是可以直接套模板。本周已经连续考察了多个并查集问题,相信大家已经掌握了模板。昨天有群友说,感谢每日一题连续这么多次都是并查集题目,他现在已经能够背下来模板了。这也是大家的算法成长过程。刷题一定要坚持呀!

力扣题目一般是单一考点,即每个题目只考察一个知识点。因此做每个题目时,有一半的工作量是在思考这个题目在考察什么,剩下的一半工作量就是在套模板。把题目抽象成具体考察点的能力需要我们经常练习,也是靠多刷题来获得,当然啦,多看看每日算法题的解题思路,也会对大家很有帮助的!

OK,这就是本次题解的全部内容了,如果你觉得我的题解对你有帮助的话,求赞、求关注、求转发、求在看。你的认可就是我前进的最大动力!我们明天再见!

欢迎加入组织

算法每日一题是个互相帮助、互相监督的力扣打卡网站,其地址是 https://www.ojeveryday.com/

想加入千人刷题群的朋友,可以复制上面的链接到浏览器,然后在左侧点击“加入组织”,提交力扣个人主页,即可进入刷题群。期待你早日加入。

欢迎关注我的公众号:每日算法题

在这里插入图片描述

日期

2021 年 1 月 31 日 —— 周末加油!努力!

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页